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SUMMARY

The purpose of this study is to perform a numerical application of the shape optimization formulation
of a body located in an incompressible viscous �ow �eld. The formulation is based on an optimal
control theory in which a performance function of the �uid force is introduced. The performance
function should be minimized satisfying the state equation. This problem can be transformed into the
minimization problem without constraint condition by the Lagrange multiplier method and the adjoint
equations using adjoint variables corresponding to the state equations. As a numerical study, the drag
force minimization problem in the steady Stokes �ow, which means approximated equation of the low
Reynolds number Navier–Stokes equation is carried out. After that, the unsteady Navier–Stokes �ow is
analysed. As the minimization algorithm, the steepest descent method is successfully applied. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shape design of a body subjected to the minimum drag force has long been a chal-
lenging objective in the study of �uid dynamics. Computational �uid dynamics (CFD) has
played an important role in the design process since its introduction to the study of �uid
�ow. CFD makes it possible to solve the shape optimization problem which is not based
on experience and experiments. The shape optimization problem can be transformed into the
minimization problem without constraint condition by the Lagrange multiplier method and the
adjoint equations using adjoint variables to state variables of the state equations.
Pironneau [1–3] proposed the method of changing shape optimally using the gradient which

is determined by taking variation with respect to coordinate. In an optimal control theory, con-
trol value which makes phenomenon an optimal state is solved. In this theory, performance
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function should be introduced. If the performance function is minimized, the state is opti-
mized, and then a control value can be obtained. In case of the optimal control problem with
constraint condition, the performance function should be minimized satisfying the state equa-
tion. Combination of CFD and the optimal control theory is expected to reduce computational
time and cost. In this study, the �uid forces are directly included in the performance function.
For the shape optimization, coordinate of the body can be taken as the control variable [4, 5].
Among optimization algorithm, the steepest descent methods are well-known optimization
algorithms, which probe the optimum by calculating the local gradient information.

2. STATE EQUATION

Consider a typical problem described in Figure 1, in which a solid body B with the boundary
�B, is located in an external �ow. Let � denote the boundary of �, suppose that an incom-
pressible viscous �ow occupies �. In this paper, indicial notation and summation convection
with repeated indices are used to describe equation. The state equation of the �ow can be
written by the Navier–Stokes equation in the non-dimensional form,

u̇i + ujui; j + p; i − �(ui; j + uj; i); j=0 in � (1)

ui; i=0 in � (2)

where ui, p and � are the velocity, pressure, and the viscosity coe�cient (�=1=Re), respec-
tively, in which Re is the Reynolds number.
Suppose that the boundary conditions are as follows:

ui= ûi on �U (3)

t1 = 0; u2 = 0 on �S (4)

ui=0 on �B (5)

ti=0 on �D (6)

ΓD

Ω

ΓS

ΓU

ΓB

B

ΓS

U0

Figure 1. Analytical domain and boundary condition.
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where

ti= {−p�ij + �(ui; j + uj; i)}nj (7)

in which ti is traction, and nj is unit vector of outward normal to �, respectively. The �uid
forces subjected to the body are denoted by Fi, where F1 and F2 are a drag and lift forces,
respectively. The �uid force Fi is obtained by integrating the traction ti on the boundary �B,

Fi= −
∫
�B
ti d� (8)

3. APPROXIMATION

3.1. Mixed interpolation

The weighted residual equation of the basic equation is written as follows:∫
�
wiu̇i d� +

∫
�
wiujui; j d� +

∫
�
wi; j{−p�ij + �(ui; j + uj; i)} d�=

∫
�
witi d� (9)

∫
�
qui; i d�=0 (10)

where wi and q are weighting functions.
As for the spatial discretization of the bubble function interpolation is used [6–8]. The mixed

interpolation for the momentum and pressure equations can be expressed in the following form:

(1) The bubble function interpolation for velocity

ui =�1ui1 +�2ui2 +�3ui3 +�4ũi4

ũi4 = ui4 − 1
3 (ui1 + ui2 + ui3) (11)

�1 = �1; �2 = �2; �3 = �3; �4 = 27�1�2�3

and
(2) The linear interpolation for pressure

p = �1p1 +�2p2 +�3p3

�1 = �1; �2 = �2; �3 = �3
(12)

where �� (�=1; 4) is the bubble function in four-node triangular element, �� (�=1; 3)
is the linear interpolation for pressure in three-node triangular element and ui� and
p� represent the nodal values at the �th node of each �nite element as shown in
Figure 2.

In the present analysis, the criteria of the stabilized parameter for the steady problem is
used, in which the discretized form derived by the bubble function element is equivalent to
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Figure 2. Mixed interpolation function: (a) Bubble function interpolation; and (b) linear interpolation.

those by the SUPG method [9]. In the bubble function element for the steady problem, the
stabilized parameter �eB which determines the magnitude of the streamline stabilized term can
be given by

�eB=
〈�e; 1〉2�e
�‖�e; j‖2�eAe

(13)

where 〈u′; v′〉�e =
∫
�e
u′v′ d�, ‖u′‖2�e =

∫
�e
u′u′ d� and Ae=

∫
�e
d�. From the criteria of the

stabilized parameter in the SUPG method, an optimal parameter �eS can be chosen as

�eS =

[(
2|u′

i |
he

)2
+

(
4�
h2e

)2]−1=2
(14)

where he is an element size.
Generally, Equation (13) is not equal to Equation (14). The bubble function that gives

optimal viscosity satis�es the following equation expressed by the stabilized operator control
parameter �:

〈�e; 1〉2�e
�‖�e; j‖2�eAe

= �eS (15)

It is shown that Equation (15) adds stabilized operator control term in Equation (16) only at
the barycentre point to the equation of motion;

Ne∑
e=1
�′‖�e; j‖2�ebe (16)

where Ne and be are the total number of elements and barycentre point.

3.2. Finite element equation

The �nite element equation yields as follows:

MU̇i + Aj(Uj)Ui − CiP +DjjUi +DjiUj=Ti in � (17)

Ci
T
Ui=0 in � (18)
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where

M =
∫
�
N�N� d�

Dji =
∫
�
N�; jN�; i d�

Ai(Ui) =
∫
�
N�N�UiN	; i d�

Ci =
∫
�
N�; iN� d�

Ti =
∫
�B
�thi d�

in which N and � are the interpolation function for each element of domain � and boundary
�, respectively. The approximated velocity and pressure at each nodal points are denoted by
Ui and P, respectively.

3.3. Temporal discretization

The Crank–Nicolson method is used for the temporal discretization of the state equation.

M
Un+1
i −Un

i

�t
+ Aj(Un+(1=2)

j )Un+(1=2)
i − CiPn+1 +DjjUn+(1=2)

i +DjiUn+(1=2)
j =Ti in � (19)

Ci
T
Un+1
i =0 in � (20)

where

Un+(1=2)
i = 1

2(U
n
i +U

n+1
i ) (21)

In this equation, advection term is nonlinear. It is necessary to spend long calculation time to
solve nonlinear equation. Then, in this research Un+(1=2)

j in the advection term is approximated
using average velocity of Un

j in each �nite element.

Ai(Ui)= �U
n
i

∫
�
N�N�; i d�

4. FORMULATION OF SHAPE OPTIMIZATION

In this paper, the shape optimization is de�ned as follows. Find the coordinate of the body,
which expresses the shape to minimize the �uid force subjected to the body under the con-
straints of the Navier–Stokes equations.
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4.1. Volume constraint

The shape of the body should be optimized keeping the volume constant. The volume should
be kept in each iteration cycle. To keep the volume of the body is equal to keep the volume
of the whole domain to be analysed. The volume constraint equation yields as follows:

m∑
e=1
(ae(xi))− A0 = 0 (22)

where ae(xi) is the volume of each element and A0 is the volume of the initial domain.

4.2. Performance function

In this paper, a �uid force control problem is performed. The performance function J is
de�ned by the square sum of the computed �uid force, i.e.

J =
1
2

∫ t2

t1
(q1F21 + q2F

2
2 ) dt (23)

where q1 and q2 are the weighting parameter of the drag and lift forces, respectively. The
performance function should be minimized satisfying Equations (17) and (18). The Lagrange
multiplier method is suitable for the optimal control problem with the constraint conditions
[10]. The Lagrange multipliers for Equations (17) and (18) and volume constraint are de-
�ned as adjoint velocity U ∗

i , pressure P
∗ and Lagrange multiplier of the volume constraint

equation �. This problem can be transformed into the stationary problem of the extended
performance function J ∗ which can be obtained by adding the dot product between adjoint
velocity U ∗

i , pressure P
∗ and � and state Equations (17) and (18) to the original performance

function as follows:

J ∗ =
1
2

∫ t2

t1
(q1F21 + q2F

2
2 ) dt

−
∫ t2

t1
U ∗T
i (MUi + A

j(Uj)Ui − CiP +DjjUi +DjiUj − Ti) dt

+
∫ t2

t1
P∗TCi

T
Ui dt + �

{
m∑
e=1
(ae(xi))− A0

}
(24)

where the approximated trial function of the velocity and pressure are denoted by Ui and P,
respectively.

4.3. Stationary condition

The optimal control problem with the constraint condition of Equations (1) and (2) results in
solving a stationary condition of the extended performance function J ∗ instead of the original
performance function J . The stationary condition of the extended performance function J ∗ is
that the �rst variation yields zero, which is expressed as follows:

�J ∗ =−
∫ t2

t1
�U ∗T

i (MUi + A
j(Uj)Ui − CiP +DjjUi +DjiUj − Ti) dt
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+
∫ t2

t1
�P∗TCi

T
Ui dt −

∫ t2

t1
�U T

i (MU
∗
i A

jT(Uj)U ∗
i − CiP∗

+�(Djj
T
U ∗
i +D

ijTU ∗
j )) dt +

∫ t2

t1
�PTCi

T
U ∗
i dt

+
∫ t2

t1
�T Ti (U

∗
i − qiFi) dt + ��T

{
m∑
e=1
(ae(xi))− A0

}
+ �X Ti Gi (25)

where

Gk =−
∫ t2

t1
U ∗T
i

(
@MUi
@Xk

Ui +
@Aj(Uj)
@Xk

Ui − @Ci

@Xk
P +

@Djj

@Xk
Ui +

@Dji

@Xk
Uj − @Ti

@Xk

)
dt

+
∫ t2

t1
P∗T @C

iT

@Xk
Ui dt + �T

@
@Xk

m∑
e=1
ae(Xi) (26)

in which Gk and Xk gives the gradient of the extended performance function and coordinate of
body boundary, respectively. Setting each term equal to zero to satisfy the optimal condition,
following equations are obtained:

MU̇i + Aj(Uj)Ui − CiP +DjjUi +DjiUj = Ti in � (27)

Ci
T
Ui = 0 in � (28)

MTU̇
∗
i + A

jT(Uj)U ∗
i − CiP∗ +Djj

T
U ∗
i +D

jiTU ∗
j = Ti in � (29)

Ci
T
U ∗
i = 0 in � (30)

qiFi −U ∗
i = 0 on �B (31)

m∑
e=1
(ae(xi))− A0 = 0 in � (32)

Gi = 0 in � (33)

where Ui, P, U ∗
i , P

∗, and � should be solved satisfying Equations (26)–(32). The optimal
condition of the present problem can be given as follows:

@J ∗

@Xi
=Gi=0 (34)

5. MINIMIZATION

5.1. Steepest descent method

The steepest descent method is applied to the minimization in this paper. In this method, a
modi�ed performance function, which can be obtained adding a penalty term to the perfor-
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Figure 3. Analytical domain.

Figure 4. Finite element mesh.

mance function expressed by Equation (23) is introduced. The modi�ed performance function
J ∗∗ is

J ∗∗(k) = J ∗(k) +
1
2

∫
�B
W (X (k+1)i − X (k)i )2 d� (35)

where k is the iteration number for minimization, W is weighting parameter. If the modi�ed
performance function J ∗∗ converge to the minimum, the penalty term must be zero. To min-
imize the modi�ed performance function J ∗∗ is equal to minimize the extended performance
function J ∗.
Let Xi be the optimal solution of the coordinate, then the following equality should hold:

@J ∗∗(k)

@X (k)i

=0 (36)

and the renewed surface coordinates of body is calculated at each iteration step by the fol-
lowing equation:

WX (k+1)i =WX (k)i − @J ∗(k)

@X (k)i

(37)
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Figure 5. Initial shape body and optimal shape body.
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Figure 6. Performance function.

5.2. Algorithm

The following algorithm is employed for the computation.

1. Select initial surface coordinates X (0)i in �.
2. Solve u(0)i , p

(0) by Equations (26), (27) in �.
3. Compute J (0).
4. Solve u∗(0)

i , p∗(0) by Equations (28)–(30) in �.
5. Compute X (k)i by Equation (36).
6. Solve u(k)i , p

(k) by Equations (26), (27) in �.
7. Compute J (k).
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(b)(a)

Figure 7. Pressure distribution: (a) Initial shape; and (b) optimal shape.

(a) (b)

Figure 8. Velocity vector distribution: (a) Initial shape; and (b) optimal shape.

8. If |X (k)i − X (k−1)i |¡ 
 then stop. Else solve u∗(k)
i , p∗(k) by Equations (28)–(30) in �.

9. Go to 5.

6. NUMERICAL STUDIES

For numerical study, the drag minimization problem of a circular cylinder located in the
viscous �ow is analysed. The weighting parameter q1 and q2 are 1.0 and 0.0, respectively.

6.1. Case 1

For the state equation, the Stokes equation is applied.

p; i − �(ui; j + uj; i); j =0 in �
ui; i =0 in �

Figures 3 and 4 show the domain to be analysed and the �nite element mesh.
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Figure 11. Finite element mesh.
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Figure 12. Finite element mesh of optimal shape (Re=100:0).
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Figure 13. Performance function.

The Reynolds number is 0.1. Figure 5 represents the initial shape and a optimal shape of
the body. Figure 6 shows history of the performance function. Figures 7 and 8 are pressure
and velocity vector distributions. Figure 9 illustrates vorticity distribution on the surface of
the body. It is clearly shown in Figure 9 that the Pironneau’s necessary condition has been
satis�ed.
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(a) (b)

Figure 14. Pressure distribution: (a) Initial shape; and (b) optimal shape.

(a) (b)

Figure 15. Velocity vector distribution: (a) Initial shape; and (b) optimal shape.

Figure 16. Vorticity distribution: (a) Initial shape; and (b) optimal shape.

6.2. Case 2

For the state equation, the Navier–Stokes equation is applied.

u̇i + ujui; j + p; i − �(ui; j + uj; i); j=0 in �

ui; i=0 in �

Figures 10 and 11 show the domain to be analysed and the �nite element mesh.
The Reynolds number is set at 100.0. Figure 12 represents the �nite element mesh of the

�nal optimal shape. Figure 13 shows history of the performance function. Figures 14 and
15 are pressure and velocity vector distributions. Figure 16 illustrates vorticity distribution.
Generally, to minimize the wake, in which there is vorticity, the inswept shape which does
not cause separation is de�ned as the optimal shape. However, in this case, the wake can be
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Figure 17. Finite element mesh of initial shape (Re=100:0).

Figure 18. Finite element mesh of controlled shape (Re=100:0).

minimized in the shape in Figure 12 which does not have inswept form. This seems because
no separation has occurred around the circular cylinder.

6.3. Case 3

Optimal shape obtained at the Stokes �ow is selected as the initial shape. Figures 17 and 18
show the �nite element meshes of the initial and the controlled shapes which is intermediate
shape in the computation. Figure 19 illustrates the gradient vectors. The shape is changing to
the shape which is similar to the one obtained in Figure 12.
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Figure 19. Gradient vectors (Re=100:0).

7. CONCLUSION

In this paper, the shape optimization in the Stokes �ow and the Navier–Stokes �ow has been
presented. The adjoint equation was derived from the gradient of the performance function.
The steepest descent method is e�ectively used for the minimization algorithm. The operation
of changing the body shape has started from the circle and the initial body shape obtained
by the previous calculation. In the Stokes �ow, the drag force is reduced about 17%. The
Pironneau’s necessary condition that the vorticity distribution on the surface of the body is
almost constant is obtained. This method can be applied to the unsteady �ow. In the optimal
shape, wake has been controlled.
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